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Analyzing the d-dimensional spherical model, we show that underlying saddles, defined through a map in
the configuration space, play a central role in driving the phase transition. At the phase transition point the
underlying saddle energy reaches its lowest value, corresponding to the trivial boundary topological singularity.
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I. INTRODUCTION

Since the pioneering works of Pettini and co-workers �1�
�for a review, see Refs. �2,3� and references therein�, many
papers have been devoted to investigating the hypothesized
relationship between phase transitions and topological
changes in configuration space for interacting systems �topo-
logical hypothesis� �4–12�. The matter has been partially
clarified with the demonstration of a theorem �13–15� that
states that a topological change is a necessary condition for
the presence of a phase transition. Specifically, this theorem
asserts that the thermodynamic phase transition energy ec
corresponds to a topological change of the submanifold
Me= ��q�V�q��Ne� �q are the generalized coordinates, V�q�
the potential energy function, and N the number of degrees
of freedom� exactly at the transition energy ec. The theorem
strictly holds for systems with a smooth, confining, bounded,
and finite-range interaction potential. For a wider class of
interaction potentials such a relation has not yet been estab-
lished; there are model systems �mainly with mean-field in-
teraction potentials, so not satisfying the theorem hypoth-
eses� for which phase transitions and topological changes
seem not to be strictly related. Among other examples, such
a discrepancy has been recently �16� observed in the finite-
dimensional spherical model �17�, for which the phase tran-
sition energy has been shown not to correspond to topologi-
cal changes �at least “strong” topological changes, those
supposed to be related to phase transitions �3,5��.

Following previous works �18–20�, we suggest the possi-
bility that the relevant information driving the phase transi-
tion is encoded in the underlying saddles, i.e., the closest
stationary points to explored configurations �weak topologi-
cal hypothesis�. Applying such an analysis to the spherical
model �17�, we find that, at the phase transition, the energy
of the underlying saddles reaches the minimum value, corre-
sponding to the trivial boundary topological singularity.
Therefore, also the d-dimensional spherical model, similarly
to other models �18,19�, suggests the correctness of the to-
pological hypothesis �even though in the weak form�.

The paper is organized as follows. In Sec. II we will in-
troduce the model, Sec. III is devoted to the thermodynamics
and Sec. IV to the topological properties. The main result is
presented in Sec. V, where the underlying saddle properties
are investigated. Conclusions are drawn in Sec. VI.

II. THE MODEL

The d-dimensional spherical model is defined by N real
variables �i lying in a d-dimensional hypercubic lattice, sub-
ject to the spherical constraint

�
i=1

N

�i
2 = N , �1�

and interacting through the Hamiltonian

H = −
J0

2 �
	i,j


�i� j , �2�

where the sum 	i , j
 is over nearest-neighbors �counting
twice a given pair�. It is worth noting that the spherical con-
straint Eq. �1� introduces a sort of long-range interaction, so,
strictly speaking, the model cannot be properly defined as
shortranged. Diagonalizing the interaction matrix Jij—which
is J0 if �i , j� are nearest neighbors, and 0 otherwise �periodic
boundary conditions are applied�—the Hamiltonian can be
written as

H = −
J0

2 �
i=1

N

�ixi
2, �3�

where J0�i are the eigenvalues of Jij and xi are the new
constrained variables, with �i=1

N xi
2=N. The eigenvalues �i

can be written as �16,17�

��pi�
= 2�

i=1

d

cos�2�pi/L� , �4�

where L=N1/d and pi=0, . . . ,L−1. Taking into account pos-
sible degeneracy of eigenvalues, we can group together vari-

ables corresponding to the same value �̂i, obtaining

H = −
J0

2 �
i=0

N̂

�̂iri
2, �5�

where ri
2=� j�Ci

xj
2 ��iri

2=N�, Ci is the set of di indices with

the same �̂i ��idi=N�, and N̂+1 is the number of distinct

eigenvalues �̂i.
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III. THERMODYNAMICS

The thermodynamics can be exactly solved �17� and, in
the canonical ensemble, the free energy density f turns out to
be

− �f = −
1

2
�1 + ln 4K� + 2Kz −

1

2
g�z� , �6�

where K=�J0 /2 ��=1 /kBT, kB=1 in the following� and

g�z� =
1

�2��d�
0

2�

d�1 ¯ d�d ln�z − �
i=1

d

cos �i� . �7�

The variable z, as a function of �, z���, is the solution of the
saddle point equation

4K =
1

�2��d�
0

2�

d�1 ¯ d�d
1

z − �
i=1

d

cos �i

, �8�

or, in a more compact form,

4K = �
0

�

ds e−zs�I0�s��d, �9�

with I0�s�=��d� /2��exp�s cos �� the modified Bessel func-
tion of zeroth order.

A continuous phase transition takes place for d	3. The
energy density

e��� = 
1

2�
− J0z��� for � 
 �c,

1

2�
− J0d for � � �c,� �10�

can be studied numerically and, as examples, it is shown in
Figs. 1 and 2 �full lines� as a function of temperature
T for d=3 and 4. The phase transitions are located at
Tc

�3� /J0�3.9573 and Tc
�4� /J0�6.4537. respectively, corre-

sponding to critical energy values ec
�3� /J0�−1.0216 and

ec
�4� /J0�−0.7728 �16,17�.

IV. TOPOLOGY

Topological quantities are related to stationary points of
the potential energy. Indeed, the topology of the submanifold
Me can be investigated, using Morse theory, studying the
critical values �corresponding to stationary points� of the po-
tential energy function. For the spherical model critical
points are, in fact, critical submanifolds �disjoint hyper-

spheres� �16�. There are N̂+1 of such topological hyper-
spheres, whose dimension is given by the degeneracy di of
the corresponding eigenvalue. Using the ri variables—see
Eq. �5�—the kth hypersphere is defined by rk=�N, and
ri=0 for i�k. The energy of this critical manifold is

es
�k�=−J0�̂k /2.

Risau-Gusman et al. �16� have shown that there is a con-
tinuum of topological transitions; however, abrupt �or strong�
topological changes �supposed to be related to phase transi-
tions �3,5�� are located at integer values of e /J0, specifically,
at odd values of e /J0 for odd d, even values of e /2J0 for odd
d /2, and odd values of e /2J0 for even d /2. These values do
not correspond to the phase transition energies ec /J0. No
strong topological discontinuity seems to be associated with
the phase transition.

We suggest that a topology–phase-transition relationship
could be established for this model, even though in a weaker
sense, by looking at the underlying saddles.

V. UNDERLYING SADDLES

Underlying saddles are defined as the closest �with respect
to the Euclidean distance in the configuration space� saddles
to instantaneous configurations. We can then associate with
any given configuration �xi� �i=1, . . . ,N�—corresponding to

the set of values �ri�, i=0, . . . , N̂; see Eq. �5�—the closest

saddle �the critical hypersphere, in fact� �ri
�s�� �i=0, . . . , N̂�

through the map

M:�xi� → �ri
�s�� , �11�

with

rk
�s� = �N ,
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FIG. 1. �Color online� Energy as a function of temperature for
d=3. Dashed and dotted lines are the underlying saddle energies for
different sizes. Tc=3.9573 is the thermodynamic phase transition
temperature.
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FIG. 2. �Color online� Energy as a function of temperature for
d=4. Dashed and dotted lines are the underlying saddle energies for
different sizes. Tc=6.4537 is the thermodynamic phase transition
temperature.
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ri
�s� = 0, i � k, where rk = max

i
ri. �12�

This follows immediately from the saddle point structure in
configuration space �see previous section� and considering
the minimum of d2=�i�ri−ri

s�2 over the different saddles �we
note that the distance d in r space corresponds to the mini-
mum distance in configuration space between the given point
�xi� and the points belonging to the considered critical hyper-
sphere surface�.

Writing the partition function in terms of ri variables and
considering Eq. �8�—which defines z���—the average saddle
energy can be written as

es��� = �
0

�

�
i=0

N̂

�driP�ri��es
�k�, �13�

where k is given by rk=maxi ri and

P�ri� =
2�i

di/2

�di/2�
ri

di−1e−�iri
2

�14�

with �i=2K�z− �̂i /2� and �x�=�0
�dt tx−1e−t is the Euler

Gamma function. The quantity es
�k�=−J0�̂k /2 is the energy of

the closest saddle to the sampled equilibrium configurations.
In Figs. 1 and 2 �dashed and dotted lines� the mean

saddle energy as a function of temperature is shown for
d=3 and 4. Different system sizes were used in the
numerical calculation of es through Eq. �13�. For all N the es
curves approach the value −J0d at the phase transition tem-
perature Tc, es�Tc�=−J0d. In other words, when the system
approaches the phase transition point, the underlying ex-
plored saddles approach the absolute minimum. It is worth
noting that finite-size effects are relevant in determining the
T dependence of the saddle energy es. Indeed, looking at the

size dependence of es at fixed temperature �Figs. 3 and 4 for
two given temperatures�, a very slow approach to an
asymptotic value is observed.

VI. CONCLUSIONS

Investigating the thermodynamics and topology of the
d-dimensional spherical model, we have shown that underly-
ing saddles play a central role in driving the phase transition.
The map in the configuration space from instantaneous con-
figurations to closest saddles relates the phase transition en-
ergy ec to a critical topological value. In particular, the
saddle energy goes to the minimum value at the phase tran-
sition point. The thermodynamic phase transition seems then
to be related to the trivial critical topological value, i.e., the
boundary energy −J0d: below Tc �and correspondingly below
ec� the system is always close to the minimum critical point
�of energy −J0d�, while above Tc �and ec� the closest critical
points are saddle points of growing energy. Even though,
strictly speaking, for this model the �unconstrained� potential
energy function cannot be considered a good Morse
function—due to the constraint in Eq. �1�—and thus the ob-
served discrepancy between topological and phase transition
singularities should not be so surprising, it is quite remark-
able that the “shortcut” represented by the weak topological
hypothesis, which has been proven to work in different mod-
els �18,19�, should also be satisfied by the d-dimensional
spherical model investigated here. In other words, the hy-
pothesized relationship between phase transitions and topo-
logical changes seems to be achieved by looking at the clos-
est saddles in configuration space: the relevant topological
information is stored in the saddles close to which the system
is moving during the exploration of the whole configuration
space. Whether the present findings are more general and
have a deeper theoretical meaning remains a matter of future
research.
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